Identifier to cite or link to this item: http://hdl.handle.net/20.500.13003/10756
Spreading effect of tDCS in individuals with attention-deficit/hyperactivity disorder as shown by functional cortical networks: a randomized, double-blind, sham-controlled trial
Identifiers
ISSN: 1664-0640
WOS ID: 000364470800002
Scopus EID: 2-s2.0-84940565363
PMID: 26300790
Embase PUI: L605834486
Share
Statistics
Item usage statisticsMetadata
Show Dublin Core item recordPublication date
2015-08-04Document type
research articleCitation
Cosmo C, Ferreira C, Garcia J, Vivas M, Do Rosario RS, Fontes Baptista A, et al. Spreading effect of tDCS in individuals with attention-deficit/hyperactivity disorder as shown by functional cortical networks: a randomized, double-blind, sham-controlled trial. Front Psychiatry. 2015 Aug 04;6:111.Abstract
Background: Transcranial direct current stimulation (tDCS) is known to modulate spontaneous neural network excitability. The cognitive improvement observed in previous trials raises the potential of this technique as a possible therapeutic tool for use in attentiondeficit/hyperactivity disorder (ADHD) population. However, to explore the potential of this technique as a treatment approach, the functional parameters of brain connectivity and the extent of its effects need to be more fully investigated. Objective: The aim of this study was to investigate a functional cortical network (FCN) model based on electroencephalographic activity for studying the dynamic patterns of brain connectivity modulated by tDCS and the distribution of its effects in individuals with ADHD. Methods: Sixty ADHD patients participated in a parallel, randomized, double-blind, sham-controlled trial. Individuals underwent a single session of sham or anodal tDCS at 1 mA of current intensity over the left dorsolateral prefrontal cortex for 20 min. The acute effects of stimulation on brain connectivity were assessed using the FCN model based on electroencephalography activity. Results: Comparing the weighted node degree within groups prior to and following the intervention, a statistically significant difference was found in the electrodes located on the target and correlated areas in the active group (p <0.05), while no statistically significant results were found in the sham group (p > 0.05; paired-sample Wilcoxon signed-rank test). Conclusion: Anodal tDCS increased functional brain connectivity in individuals with ADHD compared to data recorded in the baseline resting state. In addition, although some studies have suggested that the effects of tDCS are selective, the present findings show that its modulatory activity spreads. Further studies need to be performed to investigate the dynamic patterns and physiological mechanisms underlying the modulatory effects of tDCS.
Publisher version
https://dx.doi.org/10.3389/fpsyt.2015.00111Keywords
attention-deficit/hyperactivity disorderfunctional cortical networks
transcranial direct current stimulation
spreading effect
dorsolateral prefrontal cortex